Lớp 1

Đề thi lớp 1

Lớp 2

Lớp 2 - kết nối tri thức

Lớp 2 - Chân trời sáng tạo

Lớp 2 - Cánh diều

Tài liệu tham khảo

Lớp 3

Lớp 3 - kết nối tri thức

Lớp 3 - Chân trời sáng sủa tạo

Lớp 3 - Cánh diều

Tài liệu tham khảo

Lớp 4

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Lớp 5

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Lớp 6

Lớp 6 - kết nối tri thức

Lớp 6 - Chân trời sáng tạo

Lớp 6 - Cánh diều

Sách/Vở bài xích tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 7

Lớp 7 - kết nối tri thức

Lớp 7 - Chân trời sáng tạo

Lớp 7 - Cánh diều

Sách/Vở bài bác tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 8

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 9

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 10

Lớp 10 - kết nối tri thức

Lớp 10 - Chân trời sáng tạo

Lớp 10 - Cánh diều

Sách/Vở bài xích tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 11

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 12

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Chuyên đề và Trắc nghiệm

IT

Ngữ pháp tiếng Anh

Lập trình Java

Phát triển web

Lập trình C, C++, Python

Cơ sở dữ liệu


*

Nhằm giúp các bạn ôn luyện và giành được tác dụng cao trong kì thi tuyển sinh vào lớp 10, nambaongu.com.vn biên soạn tuyển tập Đề thi vào lớp 10 môn Toán (có đáp án) theo cấu trúc ra đề Trắc nghiệm - từ bỏ luận mới. Với đó là các dạng bài xích tập hay bao gồm trong đề thi vào lớp 10 môn Toán với cách thức giải chi tiết. Hy vọng tài liệu này để giúp đỡ học sinh ôn luyện, củng cố kỹ năng và sẵn sàng tốt mang lại kì thi tuyển sinh vào lớp 10 môn Toán năm 2022.

Bạn đang xem: Đề luyện thi vào lớp 10 môn toán

I/ Đề thi môn Toán vào lớp 10 (không chuyên)

Bộ Đề thi vào lớp 10 môn Toán năm 2022 có đáp án (Trắc nghiệm - từ bỏ luận)

Bộ Đề thi vào lớp 10 môn Toán năm 2022 bao gồm đáp án (Tự luận)

Bộ Đề thi vào lớp 10 môn Toán TP thủ đô hà nội năm 2021 - 2022 tất cả đáp án

II/ Đề thi môn Toán vào lớp 10 (chuyên)

III/ những dạng bài bác tập ôn thi vào lớp 10 môn Toán

Tài liệu ôn thi vào lớp 10 môn Toán

Sở giáo dục và Đào sinh sản .....

Kỳ thi tuyển chọn sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Câu 1: (2 điểm) Rút gọn biểu thức sau:

a) A=12−253+60.

b) B=4xx−3.x2−6x+9x với 0 x2−2mx+m2−m+3=0 (1), cùng với m là tham số.

a) Giải phương trình (1) cùng với m = 4.

b) Tìm những giá trị của m để phương trình (1) bao gồm hai nghiệm cùng biểu thức: P=x1x2−x1−x2 đạt giá bán trị bé dại nhất.

Câu 3: (1,5 điểm)

Tình cảm gia đình có sức khỏe phi trường. Các bạn Vì quyết chiến – Cậu nhỏ bé 13 tuổi qua thương lưu giữ em trai của bản thân mình đã vượt qua một quãng con đường dài 180km từ sơn La đến bệnh viện Nhi Trung ương thủ đô để thăm em. Sau thời điểm đi bằng xe đạp 7 giờ, các bạn ấy được lên xe cộ khách cùng đi tiếp 1 giờ 1/2 tiếng nữa thì đến nơi. Biết vận tốc của xe cộ khách lớn hơn vận tốc của xe đạp là 35 km/h. Tính tốc độ xe đạp của bạn Chiến.

Câu 4: (3,0 điểm)

cho đường tròn (O) bao gồm hai đường kính AB cùng MN vuông góc cùng với nhau. Trên tia đối của tia MA đem điểm C không giống điểm M. Kẻ MH vuông góc với BC (H trực thuộc BC).

a) chứng minh BOMH là tứ giác nội tiếp.

b) MB giảm OH trên E. Minh chứng ME.MH = BE.HC.

c) hotline giao điểm của con đường tròn (O) với đường tròn nước ngoài tiếp ∆MHC là K. Chứng minh 3 điểm C, K, E thẳng hàng.

Câu 5: (1,0 điểm) Giải phương trình: 5x2+27x+25−5x+1=x2−4.

 

HƯỚNG DẪN GIẢI ĐỀ SỐ 03

Câu 1:

a) A=12−253+60=36−215+215=36=6

b) cùng với 0 B=4xx−3.x2−6x+9x =2xx−3.x−32x=−2x3−x.x−3x=−2x3−x3−xx=−2

Câu 2:

1) vì đồ thị hàm số đi qua điểm M(1; –1) nên a+ b = -1

trang bị thị hàm số trải qua điểm N(2; 1) cần 2a + b = 1

yêu cầu bài bác toán a+b=−12a+b=1⇔a=2b=−3

Vậy hàm số đề nghị tìm là y = 2x – 3.

2)

a) với m = 4, phương trình (1) trở thành: x2−8x+15=0. Có Δ=1>0

Phương trình gồm hai nghệm phân biệt x1=3; x2=5;

b) Ta có: ∆" = −m2−1.m2−m+3=m2−m2+m−3=m−3.

Phương trình (1) có hai nghiệm x1, x2 khi ∆" 0 ⇔ m−3≥0⇔m≥3

Với m≥3, theo định lí Vi–ét ta có: x1+x2=2mx1.x2=m2−m+3

Theo bài xích ra: P=x1x2−x1−x2=x1x2−(x1+x2)

Áp chạm định lí Vi–ét ta được:

P=m2−m+3−2m=m2−3m+3 =m(m−3)+3

do m≥3 nên m(m−3)≥0 , suy ra P≥3. Lốt " = " xẩy ra khi m = 3.

Vậy giá bán trị nhỏ tuổi nhất của p là 3 lúc m = 3.

Câu 3:

Đổi 1 giờ 30 phút = 1,5 giờ.

Xem thêm: Làm Sao Để Người Yêu Cũ Quay Lại Và Giữ Họ Mãi Mãi, Cách Để Khiến Người Yêu Cũ Quay Về Bên Bạn

Gọi vận tốc xe đạp của bạn Chiến là x (km/h, x > 0)

tốc độ của ô tô là x + 35 (km/h)

Quãng đường các bạn Chiến đi bằng xe đạp là: 7x (km)

Quãng đường chúng ta Chiến đi bằng ô tô là: 1,5(x + 35)(km)

vị tổng quãng đường bạn Chiến đi là 180km đề xuất ta gồm phương trình:

7x + 1,5(x + 35) = 180 7x + 1,5x + 52,2 = 180 8,5x = 127,5 x = 15

(thỏa mãn)

Vậy chúng ta Chiến đi bằng xe đạp với vận tốc là 15 km/h.

Câu 4:

*

a) Ta có: MOB^=900 (do AB⊥MN) và MHB^=900(do MH⊥BC)

Suy ra: MOB^+MHB^=900+900=1800

=> Tứ giác BOMH nội tiếp.

b) ∆OMB vuông cân nặng tại O yêu cầu OBM^=OMB^ (1)

Tứ giác BOMH nội tiếp nên OBM^=OHM^ (cùng chắn cung OM)

và OMB^=OHB^ (cùng chắn cung OB) (2)

từ (1) cùng (2) suy ra: OHM^=OHB^

=> HO là tia phân giác của MHB^ => MEBE=MHHB (3)

Áp dụng hệ thức lượng trong ∆BMC vuông trên M có MH là đường cao

Ta có: HM2=HC.HB⇒HMHB=HCHM (4)

tự (3) với (4) suy ra: MEBE=HCHM5⇒ME.HM=BE.HC (đpcm)

c) do MHC^=900(do MH⊥BC) buộc phải đường tròn ngoại tiếp ∆MHC có 2 lần bán kính là MC

⇒MKC^=900 (góc nội tiếp chắn nửa đường tròn)

MN là đường kính của mặt đường tròn (O) nên MKN^=900 (góc nội tiếp chắn nửa con đường tròn)

⇒MKC^+MKN^=1800

=> 3 điểm C, K, N thẳng mặt hàng (*)

∆MHC ∽ ∆BMC (g.g) ⇒HCMH=MCBM. 

nhưng MB = BN (do ∆MBN cân nặng tại B)

=>HCHM=MCBN, kết hợp với MEBE=HCHM (theo (5) )

Suy ra: MCBN=MEBE . Nhưng EBN^=EMC^=900 => ∆MCE ∽ ∆BNE (c.g.c)

⇒MEC^=BEN^, nhưng MEC^+BEC^=1800 (do 3 điểm M, E, B trực tiếp hàng)

⇒BEC^+BEN^=1800

=> 3 điểm C, E, N thẳng hàng (**)

từ (*) cùng (**) suy ra 4 điểm C, K, E, N thẳng hàng

=> 3 điểm C, K, E thẳng hàng (đpcm)

Câu 5: ĐKXĐ: x≥2

Ta có: 5x2+27x+25−5x+1=x2−4

⇔5x2+27x+25=5x+1+x2−4

⇔5x2+27x+25=x2−4+25x+25+10(x+1)(x2−4)

⇔4x2+2x+4=10x+1)(x2−4)⇔2x2+x+2=5(x+1)(x2−4) (1)

phương pháp 1:

(1) ⇔x2−2x−44x2−13x−26=0

Giải ra được:

x=1−5(loại); x=1+5(nhận); x=13+3658 (nhận); x=13−3658 (loại)

biện pháp 2:

(1) ⇔5x2−x−2x+2=2x2−x−2+3x+2 (2)

Đặt a=x2−x+2; b=x+2 (a≥0; b≥0)

lúc đó, phương trình (2) trở thành:

5ab=2a2+3b2⇔2a2−5ab+3b2=0⇔a−b2a−3b=0⇔a=b2a=3b (*)

 – với a = b thì x2−x−2=x+2⇔x2−2x−4⇔x=1−5(ktm)x=1+5(tm)

 – với 2a = 3b thì 2x2−x−2=3x+2⇔4x2−13x−26=0⇔x=13+3658 (tm)x=13−3658 (ktm)

Vậy phương trình đã cho có hai nghiệm: x=1+5 và x=13+3658 .

Sở giáo dục đào tạo và Đào sản xuất .....

Kỳ thi tuyển chọn sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Sở giáo dục và đào tạo và Đào tạo .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Phần I. Trắc nghiệm (2 điểm)

Câu 1: Điều kiện khẳng định của biểu thức

*
là:

A.x ≠ 0 B.x ≥ 1 C.x ≥ 1 hoặc x 2 và đường thẳng (d) y =

*
+ 3

A. (2; 2)B. ( 2; 2) và (0; 0)

C.(-3; ) D.(2; 2) với (-3; )

Câu 5: giá trị của k để phương trình x2 + 3x + 2k = 0 bao gồm 2 nghiệm trái lốt là:

A. K > 0B. K 2 D. K (2 điểm)

1) Thu gọn biểu thức

*

2) giải phương trình với hệ phương trình sau:

a) 3x2 + 5x - 8 = 0

b) (x2 + 5)2 = 3(x2 + 5) + 4

*

Bài 2: (1,5 điểm) Trong phương diện phẳng tọa độ Oxy cho Parabol (P) : y = x2 và mặt đường thẳng (d) :

y = 2mx – 2m + 1

a) với m = -1 , hãy vẽ 2 đồ gia dụng thị hàm số trên và một hệ trục tọa độ

b) tìm kiếm m để (d) với (P) giảm nhau tại 2 điểm khác nhau : A (x1; y1 );B(x2; y2) làm sao để cho tổng những tung độ của nhị giao điểm bởi 2 .

Bài 3: (1 điểm) Rút gọn gàng biểu thức sau:

*

Tìm x để A (3,5 điểm) mang lại đường tròn (O) gồm dây cung CD chũm định. Gọi M là vấn đề nằm chính giữa cung nhỏ tuổi CD. Đường kính MN của đường tròn (O) giảm dây CD tại I. Mang điểm E ngẫu nhiên trên cung mập CD, (E khác C,D,N); ME cắt CD trên K. Những đường trực tiếp NE với CD cắt nhau tại P.

a) chứng minh rằng :Tứ giác IKEN nội tiếp

b) chứng minh: EI.MN = NK.ME

c) NK cắt MP trên Q. Chứng minh: IK là phân giác của góc EIQ

d) trường đoản cú C vẽ mặt đường thẳng vuông góc với EN giảm đường thẳng DE tại H. Chứng minh khi E di động trên cung bự CD (E không giống C, D, N) thì H luôn chạy trên một đường vắt định.

Phần I. Trắc nghiệm

1.C2.D3.A4.D
5.B6.A7.D8.B

Phần II. Từ bỏ luận

Bài 1:

*

2) a) 3x2 + 5x - 8 = 0

Δ = 52 - 4.3.(-8) = 121 => √Δ = 11

*

Vậy phương trình đang cho bao gồm tập nghiệm là S =

*

b) (x2 + 3)2 = 3(x2 + 3) + 4

Đặt x2 + 3 = t (t ≥ 3), phương trình đã cho thay đổi

t2 - 3t - 4 = 0

Δ = 32 - 4.(-4) = 25> 0

Phương trình tất cả 2 nghiệm riêng biệt :

*

Do t ≥ 3 bắt buộc t = 4

Với t = 4, ta có: x2 + 3 = 4 ⇔ x2 = 1 ⇔ x = ±1

Vậy phương trình đang cho bao gồm 2 nghiệm x = ± 1

*

Bài 2:

Trong phương diện phẳng tọa độ Oxy mang lại Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

a) cùng với m = 1; (d): y = 2x – 1

Bảng quý giá

x01
y = 2x – 1-11

(P) : y = x2

Bảng giá chỉ trị

x -2 -1 0 1 2
y = x2 4 1 0 1 4

Đồ thị hàm số y = x2 là con đường parabol nằm bên trên trục hoành, dấn Oy có tác dụng trục đối xứng và nhận điểm O(0; 0) là đỉnh và điểm thấp tốt nhất

*

b) mang đến Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = 2mx - 2m + 1

⇔ x2 - 2mx + 2m - 1 = 0

Δ" = mét vuông - (2m - 1)=(m - 1)2

(d) cùng (P) giảm nhau trên 2 điểm phân minh khi và chỉ còn khi phương trình hoành độ giao điểm gồm 2 nghiệm khác nhau

⇔ Δ" > 0 ⇔ (m - 1)2 > 0 ⇔ m ≠ 1

Khi kia (d) cắt (P) tại 2 điểm A(x1, 2mx1 – 2m + 1) ; B ( x2, 2mx2 – 2m + 1)

Theo định lí Vi-et ta có: x1 + x2 = 2m

Từ mang thiết đề bài, tổng những tung độ giao điểm bởi 2 đề nghị ta có:

2mx1 – 2m + 1 + 2mx2 – 2m + 1 = 2

⇔ 2m (x1 + x2) – 4m + 2 = 2

⇔ 4m2 - 4m = 0 ⇔ 4m(m - 1) = 0

*

Đối chiếu với điều kiện m ≠ 1, thì m = 0 thỏa mãn.

Bài 3:

*

A > 0 ⇔

*
> 0 ⇔ 5 - 5√x > 0 ⇔ √x 0 khi 0 ∠KIN = 90o

Xét tứ giác IKEN có:

∠KIN = 90o

∠KEN = 90o (góc nội tiếp chắn nửa đường tròn)

=> ∠KIN + ∠KEN = 180o

=> Tứ giác IKEN là tứ giác nội tiếp

b) Xét ΔMEI và ΔMNK có:

∠NME là góc chung

∠IEM = ∠MNK ( 2 góc nội tiếp thuộc chắn cung IK)

=> ΔMEI ∼ ΔMNK (g.g)

*
=>EI.MN = NK.ME

c) Xét tam giác MNP có:

ME ⊥ NP; PI ⊥ MN

ME giao PI tại K

=> K là trực tâm của tam giác MNP

=> ∠NQP = 90o

Xét tứ giác NIQP có:

∠NQP = 90o

∠NIP = 90o

=> 2 đỉnh Q, I cùng nhìn cạnh NP dưới 1 góc bằng nhau

=> tứ giác NIQP là tứ giác nội tiếp

=> ∠QIP = ∠QNP (2 góc nội tiếp cùng chắn cung PQ)(1)

Mặt khác IKEN là tứ giác nội tiếp

=> ∠KIE = ∠KNE (2 góc nội tiếp thuộc chắn cung KE)(2)

Từ (1) cùng (2)

=> ∠QIP = ∠KIE

=> IE là tia phân giác của ∠QIE

d) Ta có:

*

Mà ∠DEM = ∠MEC (2 góc nội tiếp chắn 2 cung bởi nhau)

=> ∠EHC = ∠ECH => ΔEHC cân nặng tại E

=> EN là mặt đường trung trực của CH

Xét đường tròn (O) có: Đường kính OM vuông góc cùng với dây CD trên I

=> NI là đường trung trực của CD => NC = ND

EN là đường trung trực của CH => NC = NH

=> N là trọng điểm đường tròn nước ngoài tiếp tam giác DCH

=> H ∈ (N, NC)

Mà N, C cố định và thắt chặt => H thuộc con đường tròn cố định

Sở giáo dục và Đào sản xuất .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Bài 1 : ( 1,5 điểm)

1) Rút gọn gàng biểu thức sau:

*

2) cho biểu thức

*

a) Rút gọn gàng biểu thức M.

b) Tìm các giá trị nguyên của x nhằm giá trị tương xứng của M nguyên.

Bài 2 : ( 1,5 điểm)

1) tìm kiếm m để hai phương trình sau có ít nhất một nghiệm chung:

2x2 – (3m + 2)x + 12 = 0

4x2 – (9m – 2)x + 36 = 0

2) Tìm thông số a, b của con đường thẳng y = ax + b biết mặt đường thẳng trên đi qua hai điểm là

(1; -1) với (3; 5)

Bài 3 : ( 2,5 điểm)

1) mang đến Phương trình :x2 + (m - 1) x + 5m - 6 = 0

a) giải phương trình lúc m = - 1

b) search m nhằm 2 nghiệm x1 với x2 thỏa mãn hệ thức: 4x1 + 3x2 = 1

2) Giải câu hỏi sau bằng phương pháp lập phương trình hoặc hệ phương trình

Một công ty vận tải đường bộ điều một vài xe sở hữu để chở 90 tấn hàng. Khi tới kho sản phẩm thì tất cả 2 xe pháo bị hỏng cần để chở không còn số hàng thì từng xe còn lại phải chở thêm 0,5 tấn so với dự định ban đầu. Hỏi số xe được điều cho chở hàng là từng nào xe? Biết rằng cân nặng hàng chở ngơi nghỉ mỗi xe là như nhau.

Bài 4 : ( 3,5 điểm)

1) mang đến (O; R), dây BC cố định không trải qua tâm O, A là vấn đề bất kì bên trên cung to BC. Ba đường cao AD, BE, CF của tam giác ABC cắt nhau trên H.

a) chứng minh tứ giác HDBF, BCEF nội tiếp

b) K là điểm đối xứng của A qua O. Chứng tỏ HK trải qua trung điểm của BC

c) Gỉa sử ∠BAC = 60o. Minh chứng Δ AHO cân nặng

2) Một hình chữ nhật có chiều dài 3 cm, chiều rộng bởi 2 cm, quay hình chữ nhật này một vòng quanh chiều dài của chính nó được một hình trụ. Tính diện tích toàn phần của hình trụ.

Bài 5 : ( 1 điểm)

1) mang đến a, b là 2 số thực làm sao cho a3 + b3 = 2. Hội chứng minh:

0 √x - 1 ∈ Ư (2)

√x - 1 ∈ ±1; ±2

Ta có bảng sau:

√x-1- 2-112
√x-1023
xKhông tồn tại x049

Vậy cùng với x = 0; 4; 9 thì M nhận quý giá nguyên.

Bài 2 :

1)

2x2 – (3m + 2)x + 12 = 0

4x2 – (9m – 2)x + 36 = 0

Đặt y = x2,khi kia ta có:

*

Giải (*):

(6 - 3m)x = -12

Phương trình (*) tất cả nghiệm 6 - 3m ≠ 0 m ≠ 2

Khi đó, phương trình có nghiệm:

*

Theo bí quyết đặt, ta có: y = x2

*

=>16(m-2) = 16

m = 3

Thay m= 3 vào 2 phương trình ban đầu,ta có:

*

Vậy khi m =3 thì nhị phương trình trên bao gồm nghiệm phổ biến và nghiệm bình thường là 4

2) Tìm thông số a, b của con đường thẳng y = ax + b biết con đường thẳng trên đi qua hai điểm là

(1; -1) cùng (3; 5)

Đường thẳng y = ax + b trải qua hai điểm (1; -1) với (3; 5) đề nghị ta có:

*

Vậy mặt đường thẳng buộc phải tìm là y = 2x – 3

Bài 3 :

1) mang lại Phương trình : x2 + (m - 1)x + 5m - 6 = 0

a) lúc m = -1, phương trình trở thành:

x2 - 2x - 11 = 0

Δ" = 1 + 11=12 => √(Δ") = 2√3

Phương trình tất cả nghiệm:

x1 = 1 + 2√3

x2 = 1 - 2√3

Vậy hệ phương trình bao gồm tập nghiệm là:

S =1 + 2√3; 1 - 2√3

b)

x2 + (m - 1)x + 5m - 6 = 0

Ta có:

Δ = (m - 1)2 - 4(5m - 6)

Δ = m2 - 2m + 1 - 20m + 24 = m2 - 22m + 25

Phương trình bao gồm hai nghiệm ⇔ Δ ≥ 0 ⇔ m2 - 22m + 25 ≥ 0,(*)

Theo hệ thức Vi-ét ta có:

*

Theo đề bài ta có:

4x1 + 3x2 =1 ⇔ x1 + 3(x1 + x2 ) = 1

⇔ x1 + 3(1 - m) = 1

⇔ x1= 3m - 2

=> x2 = 1 - m - x1 = 1 - m - (3m - 2) = 3 - 4m

Do kia ta có:

(3m - 2)(3 - 4m) = 5m - 6

⇔ 9m - 12m2 - 6 + 8m = 5m - 6

⇔ - 12m2 + 12m = 0

⇔ -12m(m - 1) = 0

*

Thay m = 0 vào (*) thấy thảo mãn

Thay m = 1 vào (*) thấy thảo mãn

Vậy gồm hai quý giá của m thỏa mãn bài toán là m = 0 với m = 1.

2)

Gọi con số xe được điều mang đến là x (xe) (x > 0; x ∈ N)

=>Khối lượng mặt hàng mỗi xe pháo chở là:

*
(tấn)

Do có 2 xe nghỉ nên mỗi xe còn lại phải chở thêm 0,5 tấn so với ý định nên từng xe bắt buộc chở:

*

Khi kia ta gồm phương trình:

*
.(x-2)=90

=>(180 + x)(x - 2) = 180x

x2 - 2x - 360 = 0

*

Vậy số xe được điều cho là 20 xe

Bài 4 :

*

a) Xét tứ giác BDHF có:

∠BDH = 90o (AD là mặt đường cao)

∠BFH = 90o (CF là đường cao)

=>∠BDH + ∠BFH = 180o

=> Tứ giác BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có:

∠BFC = 90o (CF là mặt đường cao)

∠BEC = 90o (BE là đường cao)

=> 2 đỉnh E cùng F cùng quan sát cạnh BC bên dưới 1 góc vuông

=> Tứ giác BCEF là tứ giác nội tiếp

b) Ta có:

∠KBA) = 90o (góc nội tiếp chắn nửa mặt đường tròn)

=>KB⊥AB

Mà CH⊥AB (CH là đường cao)

=> KB // CH

Tương tự:

∠KCA) = 90o (góc nội tiếp chắn nửa mặt đường tròn)

=>KC⊥AC

BH⊥AC (BH là mặt đường cao)

=> HB // ck

Xét tứ giác BKCF có:

KB // CH

HB // CK

=> Tứ giác BKCH là hình bình hành

=> nhị đường chéo cánh BC cùng KH giảm nhau tại trung điểm mỗi mặt đường

=> HK trải qua trung điểm của BC

c) hotline M là trung điểm của BC

Xét tam giác AHK có:

O là trung điểm của AK

M là trung điểm của BC

=> OM là mặt đường trung bình của tam giác AHK

=> OM = AH (1)

ΔBOC cân tại O gồm OM là trung tuyến đường

=> OM là tia phân giác của ∠BOC

=> ∠MOC = ∠BAC = 60o (= ∠BOC )

Xét tam giác MOC vuông tại M có:

OM = OC.cos⁡(MOC) = OC.cos⁡60o= OC = OA (2)

Từ (1) cùng (2) => OA = AH => ΔOAH cân tại A

2)

Quay hình chữ nhật vòng xung quanh chiều dài được một hình trụ có nửa đường kính đáy là R= 2 cm, độ cao là h = 3 centimet